
Digital Object Identifier (DOI) 10.1007/s100520200934
Eur. Phys. J. C 24, 117–120 (2002) THE EUROPEAN

PHYSICAL JOURNAL C

The coupling constants gρπγ and gωπγ

as derived from QCD sum rules
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Abstract. We employ QCD sum rules to calculate the coupling constants gρπγ and gωπγ by studying
the three point ρπγ and ωπγ correlation functions. Our results are in good agreement with the coupling
constants gρπγ and gωπγ that are deduced utilizing the experimentally measured values of the Γ (ρ0 → π0γ)
and Γ (ω → π0γ) decay widths.

Radiative transitions of the type V → Pγ where V and
P belong the lowest multiplets of vector (V ) and pseu-
doscalar (P ) mesons have been the subject of continuous
interest both theoretically and experimentally [1]. These
transitions have been considered from the points of view of
a large variety of theoretical models, such as phenomeno-
logical quark models [2], potential models [3], bag mod-
els [4], and effective Lagrangian approaches [5]. All these
approaches provide effective methods of investigation of
these hadronic phenomena for which a formulation for the
application of QCD from the first principles has not been
possible so far. The effective Lagrangian approach provide
a framework to study in general the physics of light neu-
tral vector mesons, ρ0, ω and φ, by combining the vector
meson dominance and chiral dynamics which are the two
principles governing low energy QCD in a suitably con-
structed effective Lagrangian [6].

On the other hand, the vector meson–pseudoscalar
meson–photon V Pγ vertex also plays a role in photopro-
duction reactions of vector mesons on nucleons. Although
at sufficiently high energies and low momentum transfers
electromagnetic production of vector mesons on nucleon
targets has been explained by pomeron exchange models,
at low energies near threshold scalar and pseudoscalar me-
son exchange mechanisms become important [7]. For the
photoproduction reactions involving ρ0 and ω mesons, the
effective coupling constants gρπγ and gωπγ are among the
physical inputs that are used in the analyses of these re-
actions. In these studies, an effective Lagrangian describ-
ing the V Pγ vertex is assumed, which also defines the
coupling constant gV Pγ , and these coupling constants are
then determined utilizing the experimental decay widths
Γ (V → Pγ) of the vector mesons. However, it should
be noted that in these decays the four-momentum of the
pseudoscalar meson P is time-like, p′2 > 0, whereas in

a e-mail: agokalp@metu.edu.tr
b e-mail: oyilmaz@metu.edu.tr

the pseudoscalar exchange amplitude contributing to the
photoproduction of vector mesons it is space-like, p′2 < 0.
Thus, if the coupling constants determined from the de-
cays V → Pγ are used in scalar and pseudoscalar exchange
amplitudes, a long extrapolation in momentum transfer is
assumed, which may be questionable. Therefore, it is of in-
terest to study the effective coupling constants gV Pγ from
another point of view as well.

In this work, we estimate the coupling constants gρπγ

and gωπγ by employing QCD sum rules which provide an
efficient and model-independent method to study many
hadronic observables, such as decay constants and form
factors, in terms of nonperturbative contributions propor-
tional to the quark and gluon condensates [8,9]. Using
the techniques of QCD sum rules, the nonperturbative
QCD physics is incorporated systematically as power cor-
rections in the short-distance operator product expansion.

In order to derive the QCD sum rule for the coupling
constant gV πγ where V denotes ρ0 or ω meson, we begin
by considering the three point correlation function

Tµν(p, p′)=
∫

d4xd4yeip
′·ye−ip·x〈0|T{jγ

µ(0)j
V
ν (x)j5(y)}|0〉,

(1)
where the interpolating currents jV

ν forρ0 and ω meson
are jρ

ν = (1/2)(uγνu − dγνd), jω
ν = (1/6)(uγνu + dγνd),

respectively, j5 = (1/2)(uiγ5u−diγ5d) is the interpolating
current for π0 [8], and jγ

µ = euuγµu+eddγµd, where eu and
ed denote the quark charges, is the quark electromagnetic
current. In accordance with QCD sum rule techniques, we
consider the three point correlation function Tµν(p, p′) in
the Euclidean region defined by p2 = −Q2 ∼ −1GeV2,
p′2 = −Q′2 ∼ −1GeV2.

The theoretical part of the sum rule for the coupling
constant gV πγ is obtained in terms of QCD degrees of
freedom by calculating the perturbative contribution and
the power corrections from operators of different dimen-
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Fig. 1. Bare quark loop diagram for V πγ vertex

sions to the three point correlation function. In the re-
gion Q2, Q′2 ∼ 1GeV2 the perturbative contribution can
be approximated by the lowest order free-quark loop dia-
gram shown in Fig. 1. Furthermore, we consider the power
corrections from operators of different dimensions, result-
ing in contributions to the three point correlation func-
tion that are proportional to the terms 〈ψψ〉, 〈ψσ · Gψ〉
and 〈(ψψ)2〉. We do not consider the gluon condensate
contribution proportional to 〈G2〉 since it is estimated to
be negligible for light-quark systems. The calculations of
the power corrections are performed in the fixed point
gauge [10]. We work in the SU(2) flavor context with
mu = md = mq; moreover, we perform our calculations of
the perturbative and power correction contributions in the
limit mq = 0. In this limit, the perturbative bare-loop dia-
gram does not make any contribution, and only operators
of dimensions d = 3 and d = 5 make contributions that
are proportional to 〈ψψ〉 and 〈ψσ ·Gψ〉, respectively. The
relevant Feynman diagrams for the calculation of these
power corrections are shown in Figs. 2 and 3.

The contribution coming from the operator of dimen-
sion d = 3 can be calculated from Fig. 2a to be

D3a =
3
4
eqgV 〈ψα(0)ψβ(x)〉

(
γ5

1

p′ γµ

1

pγν

)
αβ

, (2)

where gV = 1 for the ρ meson and gV = 1/3 for the ω
meson, resulting from the choice of the interpolating cur-
rents, and ψ is the quark field. Since the quark condensate
can be expressed by expanding the quark field ψ(x) to first
order in the form [11]

〈ψα(0)
aψβ(x)b〉= 1

12
gαβg

ab〈ψψ〉 + imq

48
gab〈ψx̂βαψ〉, (3)

with a, b denoting color indices, we obtain the contribution
D3a as

D3a = i
3
4
eqgV

1
p′2

1
p2 εαβµνpαp

′
β〈ψψ〉. (4)

The quark condensate contributions coming from the di-
agrams in Fig. 2b,c can be calculated similarly, however,
they do not give any contribution after double Borel trans-
form.

The contributions of the operators of dimension d = 5
are calculated using the diagrams shown in Fig. 3. The
contribution resulting from the diagram in Fig. 3b with
one gluon line emitted can be written as

D5b = eqgV

〈
ψ

i

σ(0)G
a
ραψ

j
δ(0)

(
λa

2

)ij
〉

× gs

8

(
γ5

1

p′ γµ

d
dkρ

1

p+ 
kγα

1

pγν

)
σδ

, (5)

and by utilizing the relation [11]

〈ψi

σG
a
ραψ

j
δ〉 = C(σρα)δσ

(
λa

2

)ji

(6)

with the coefficient

C =
1

384

〈
ψσραG

a
ρα

λa

2
ψ

〉
≡ 1

384
〈ψσ ·Gψ〉 (7)

we obtain this contribution in the form

D5b = − i
32
eqgV

1
p′2

1
p4 εαβµνpαp

′
β〈ψσ ·Gψ〉. (8)

The contribution coming from the diagram in Fig. 3c can
be calculated in a similar way to be

D5c = − 3i
32
eqgV

1
p2

1
p′4 εαβµνpαp

′
β〈ψσ ·Gψ〉. (9)

However, it should be noted that in fixed point gauge,
the momentum is not conserved in a chosen fixed point.
After calculations the momentum of the soft external fields
are set equal to zero and thus a gauge invariant result is
obtained, but the same point as the fixed point should be
chosen for all diagrams in calculations [10]. In the case
of the diagram in Fig. 3a the contribution proportional
to 〈ψσ · Gψ〉 results from the expansion of ψ(0)ψ(x) to
second order and the terms 〈xαxβ∇α∇βψ(0)ψ(0)〉 can be
rewritten in terms of 〈ψσ · Gψ〉 [11], and in this way for
the contribution of this diagram we obtain

D5a =
3

256
eqgV gs〈ψσ ·Gψ〉

(
−i

∂

∂pλ

) (
−i

∂

∂pδ

)
×Tr

(
gλδγ5

1

p′ γµ

1

pγν

)
=

3i
16
eqgV gs

1
p′2

1
p4 εαβµνpαp

′
β〈ψσ ·Gψ〉. (10)

We then turn to the calculation of the three point
correlation function through phenomenological consider-
ations. The vertex function Tµν(p, p′) satisfies a double
dispersion relation. In general such a dispersion relation
can be written in three ways by choosing two of the three
channels. For our purpose, we choose the vector and pseu-
doscalar channels and by saturating this dispersion rela-
tion by the lowest lying meson states in these channels we
obtain the physical part of the sum rule as

Tµν(p, p′) =
〈0|jV

ν |V 〉〈V (p)|jγ
µ |π(p′)〉〈π|j5|0〉

(p2 −m2
V )(p′2 −m2

π)
+ · · · , (11)

where the contributions from the higher states and the
continuum is denoted by dots. In this expression, the over-
lap amplitudes for vector and pseudoscalar mesons are
〈0|jV

ν |V 〉 = λV uV where uV is the polarization vector of
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Fig. 2a–c. Operators of dimension 3 correc-
tions proportional to 〈ψψ〉
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the vector meson and 〈π|j5|0〉 = λπ. The matrix element
of the electromagnetic current is given by

〈V (p)|jγ
µ |π(p′)〉 = −i

e

mV
gV πγK(q2)εµαβδpαuβqδ, (12)

where q = p−p′ andK(0) = 1. This expression defines the
coupling constant gV πγ through the effective Lagrangian

Leff.
V πγ =

e

mV
gV πγε

µναβ∂µVν∂αAβπ
0 (13)

describing the V πγ vertex [7].
After performing the double Borel transform with re-

spect to the variables Q2 and Q′2, we obtain the sum rule
for the coupling constant gV πγ

gV πγ =
mV

λV λπ
em2

V /M2
em2

π/M ′2 gV

e

(
eu〈uu〉 ± ed〈dd〉

)
×

(
−3

4
+

5
32
m2

0
1
M2 − 3

32
m2

0
1

M ′2

)
, (14)

where we use the relation 〈ψσ · Gψ〉 = m2
0〈ψψ〉. The

plus sign is for the ρ meson and the minus sign is for
the ω meson. For the numerical evaluation of the sum
rule we use the values m2

0 = (0.8 ± 0.02)GeV2, 〈uu〉 =
〈dd〉 = (−0.014 ± 0.002)GeV3 [12], and mρ = 0.770GeV,
mω = 0.782GeV, mπ0 = 0.135GeV [13]. For the overlap
amplitude for the vector meson states, we use the values
that are obtained from the experimental leptonic decay
widths [13] by noting that neglecting the electron mass
the e+e− decay width of the vector meson is given by

Γ (V → e+e−) =
4πα2

3
λ2

V

m3
V

,

and in this way we obtain the values λρ = (0.118 ±
0.003)GeV2 and λω = (0.036±0.001)GeV2. We note that
these values do obey the SU(3) relation λρ = 3λω within
10% accuracy. The overlap amplitude λπ for the π meson
state is given by the relation λπ = fπm

2
π/(mu +md) [14].

We use the experimental value fπ = 0.132GeV and the

Fig. 4. The coupling constant gρπγ as a function of the Borel
parameter M2 for different values of M ′2

physical mass mπ0 = 0.135GeV along with mu + md =
(0.0128 ± 0.0025)GeV [15], and obtain this amplitude as
λπ = (0.196±0.038)GeV2. In order to analyze the depen-
dence of the coupling constant gV πγ on the Borel parame-
ters M2 and M ′2, we study independent variations of M2

and M ′2 in the interval 0.6GeV2 ≤ M2,M ′2 ≤ 1.4GeV2

as these limits determine the allowed interval for the vec-
tor channel [16]. The variation of the coupling constant
gρπγ and gωπγ as a function of the Borel parameters M2

for different values of M ′2 is shown in Figs. 4 and 5, re-
spectively. The examination of these figures indicate that
the sum rule is quite stable with these reasonable varia-
tions of M2 and M ′2. Besides those due to variations of
M2 and M ′2, the other sources contributing to the uncer-
tainty in the coupling constants are the uncertainties in
the estimated values of the vacuum condensates. If we take
these uncertainties into account by a conservative esti-
mate, we obtain the coupling constants gρπγ = 0.63±0.14
and gωπγ = 1.85± 0.38. These values of the coupling con-
stant are consistent with their values used in the analy-
sis of ρ0 and ω photoproduction reactions through pseu-
doscalar exchange amplitudes which are gρπγ = 0.54 and



120 A. Gökalp, O. Yılmaz: The coupling constants gρπγ and gωπγ as derived from QCD sum rules

Fig. 5. The coupling constant gωπγ as a function of the Borel
parameter M2 for different values of M ′2

gωπγ = 1.82, respectively [17]. Moreover, if we use the ef-
fective Lagrangian given in (4), then the decay width for
V → π0γ is obtained as

Γ (V → π0γ) =
α

24
(m2

V −m2
π0)3

m5
V

g2
V πγ . (15)

The measured decay widths Γ (ρ0 → π0γ) = (102±26) keV
and Γ (ω → π0γ) = (717±49) keV [13], which roughly fol-
low the SU(3) prediction as regards their ratio, can then
be utilized to obtain the coupling constants gρπγ and gωπγ

as gρπγ = 0.69± 0.09 and gωπγ = 1.82± 0.06. Our results,
therefore, are in good agreement with the coupling con-
stants deduced from the experimental values of these de-
cay widths. We also note that the electromagnetic decays
V → Pγ of vector mesons in the flavor SU(3) sector was
studied previously [14] by employing the method of QCD
sum rules in the presence of the external electromagnetic

field. Our results, which are obtained by QCD sum
rules utilizing three point correlation functions, are con-
sistent with the values obtained in that analysis and there-
fore supplement the study of these decays using the QCD
sum rule method.

References

1. P.J. O’Donnell, Rev. Mod. Phys. 53, 673 (1981)
2. N. Barik, P.C. Dash, Phys. Rev. D 49, 299 (1994)
3. M. Benayoun, L. DelBuono, S. Eidelman, V.N. Ivanchenko,
H.B. O’Connell, Phys. Rev. D 59, 114027 (1999)

4. P. Singer, G.A. Miller, Phys. Rev. D 33, 141 (1986)
5. A. Bramon, A. Grau, P. Pancheri, Phys. Lett. B 344, 240
(1995)

6. F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356, 193 (1996)
7. A.I. Titov, T.-S.H. Lee, H. Toki, O. Streltsova, Phys. Rev.
C 60, 035205 (1999)

8. M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys.
B 147, 385, 448 (1979),

9. L.J. Reinders, H.R. Rubinstein, S. Yazaki, Phys. Rep. 127,
1 (1985)

10. A.V. Smilga, Yad. Fiz. 35, 473 (1982) [Sov. J. Nucl. Phys.
35, 271 (1982)]

11. T.M. Aliev, V.L. Eletsky, Ya.I. Kogan, Yad. Fiz. 40, 823
(1984) [Sov. J. Nucl. Phys. 40, 527 (1984)]

12. P. Colangelo, A. Khodjamirian, in Boris Ioffe Festschrift
(World Scientific, Singapore, to be published), hep-
ph/0010175

13. Particle Data Group, D.E. Groom et al., Eur. Phys. J. C
15, 1 (2000)

14. S.-L. Zhu, W.-Y.P. Hwang, Z.-S. Yang, Phys. Lett. B 420,
8 (1998)

15. J. Prades, Nucl. Phys. B 64, 253 (1998)
16. V.L. Eletsky, B.L. Ioffe, Ya.I. Kogan, Phys. Lett. B 122,

423 (1983)
17. Y. Oh, A.I. Titov, T.-S.H. Lee, nucl-th/0004055


